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SOFTWARE SYSTEM SAFETY 

James G .  Uber 
Assistant Professor of Civil Engineering 
The University of Alabama in Huntsville 

Huntsville, Alabama 

Abstract 

Software itself is not hazardous, but since software and 
hardware share common interfaces there is an opportunity for 
software to create hazards. Further, these software systems 
are complex, and proven methods for the design, analysis, and 
measurement of software safety are not yet available. This 
report reviews some past software failures, future NASA 
software trends, software engineering methods, and tools and 
techniques for various software safety analyses. 
Recommendations to NASA SRM&QA are made based on this review. 
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1. INTRODUCTION 

Complex software systems are often required for real-time 
control and monitoring of aerospace systems hardware. The 
NASA Space Shuttle software, for example, consists of some ten 
million lines of computer code that control and monitor 
hardware on the ground and in the air; the Shuttle could not 
fly without it. Since software and hardware share common 
interfaces, there are opportunities for software to create 
hazards. This linkage has historically been ignored, however, 
in formal analyses of system safety. 

This report examines some approaches for identifying and 
eliminating or controlling software hazards. In order to 
appreciate the software safety problem, however, it is 
necessary to understand something about software development 
practices, the characteristics of software and software 
errors, and "the reasons why things are the way they are." 
Accordingly, much of the report text is devoted to these 
preliminary issues in preparation for a later discussion of 
software safety and software safety analysis methods. 

Section three provides the motivation for continuing on 
into the rest of the report. This motivation is provided by 
discussions of software development llhorror stories," future 
trends in NASA software control systems developmept, and the 
value of implementing software safety programs. The next 
section discusses the current state of software engineering, 
some reasons for the current situation, and some modern 
approaches to software development. Section five considers 
the software safety problem and some solutions, and section 
six presents recommendations for addressing present and future 
software safety problems. 

XXVIII-1 



. 

2 .  Objectives 

The objectives of this study are to explore the breadth 
and depth of the software system safety problem, and to 
recommend SRMdrQA actions that can reduce the present and 
future hazards posed by software. 
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3. MOTIVATION 

3.1. Statistics and Failures 

Does the Federal Government get what it pays for? 
Perhaps not, at least when it comes to software development. 
A decade-old study of the software costs associated with nine 
federal projects depicts software procurement as a monetary 
black hole [Neumann, 19851. Of software expenditures 
totalling $6.8 million, 95% ($6.5 million) was wasted on 
software that either was delivered but never used ( 4 7 % ) ,  paid 
for but never delivered (29%), or abandoned or reworked (19%). 
Less than 2% of the software expenditures yielded software 
that was used as delivered. These statistics rsflect the 
inherent difficulty of large-scale software management and 
development, although improvements in software engineering 
practice may produce more impressive results if a similar 
study were conducted today. 

Problems with real-time control software may be subtle 
and remain innocuous until the worst possible moment. These 
problems can also survive supposedly rigorous testing 
procedures. A good example of such a software problem is the 
llbuglr that delayed the first shuttle orbital flight on April 
10, 1981. The bug was discovered when, twenty minutes prior 
to scheduled launch, the backup flight control system (BFS) 
failed to initialize when commanded. Curiously, it turned out 
that the bug was not in the BFS, but was in the primary 
avionics software system (PASS), and had gone undetected for 
over a year. John Garman, who at the time was Deputy Chief 
of the Spacecraft Software Division at J S C ,  gives a detailed 
account of the discovery and correction of the bug [Garman, 
19811; some of the details of this very intricate and subtle 
problem are given below. 

There are five general purpose computers (GPC's) onboard 
the Shuttle. These five independent machines combined with 
the PASS and BFS provide two different types of recundancy to 
guard against two different types of failures. The PASS 
executes on four of the GPC's and provides for full 
operational capability after the failure of one GPC and a safe 
return capability after the failure of a second. Note, 
however, that this redundancy provides protection only against 
hardware failures. Potential hazards from software design and 
implementation errors are not controlled since the identical 
PASS executes on all four machines simultaneously; a single 
software error (i.e. a common mode failure) could llcrashll all 
four GPC's and, in Garman's words, convert I t . . .  the Orbiter 
to an inert mass of tiles, wires, and airframe . . . I 1  From this 
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' This i s  debatable, even among the system developers. The BFS adds s i g n i f i c a n t  complexity t o  
the system (as w i l l  be discussed), and i n  fac t  the present f a i l u r e  uas an ind i rec t  r e s u l t  o f  the BFS 
implementation. Further, t h i s  "softuare redundancys8 concept i s  essent ia l l y  Like the 8BN-version88 
approach t o  achieving softuare r e l i a b i l i t y ,  which has i t s  detractors. Both r e l y  on the a s s u p t i o n  tha t  
software design and implementation errors  f o r  func t iona l l y  equivalent but independently developed 
systems are i n  fac t  independent; t h i s  assunption may not be j u s t i f i e d ,  as discussed i n  a l a t e r  section. 
In any case, the debate should not center on whether o r  not the development of  the BFS system improved 
r e l i a b i l i t y  and safety. The debate should instead center on whether the costs of  BFS developnent would 
have been be t te r  spent elsewhere, e.g. on fur ther  design and tes t ing  of  the PASS. One wonders t o  what 
extent development of  the BFS uas motivated by uncer ta in ty  about the trustworthiness o f  the PASS, or  
by an a b i l i t y  t o  @opoint the f inger"  i n  the case of  a d isaster  invo lv ing f l i g h t  software. As Garman 
says, IYbecause of  the presence of  the BFS) almost everyone involved i n  the PASS-side ' fee ls '  
more comfortable!l1 

realization came the idea to include a fifth GPC, which would 
execute a functionally equivalent but separately designed and 
implemented flight control system, the BFS. It was (or is) 
believed that this 'Isoftware redundancy" would contribute to 
the ovgrall safety and reliability of the flight software 
system. 

In its standby mode, the BFS operates by to 
the sensor inputs and some of the outputs from the PASS. Thus 
the BFS is constantly aware of the current state of the 
Orbiter and ready to "take overtt when necessary (a crew 
decision). The BFS must stop listening, however, if it 
detects an inconsistency in the PASS'S data processing, so 
that the integrity of the BFS can not be compromised by a 
failure in the PASS (a separation of failure modes). On the 
day of the bug incident, the BFS was tricked into believing 
that the PASS was compromising its data, and so properly 
refused to initialize (i.e. start listening to the PASS). The 
BFS was tricked because the BFS processes (processes can be 
thought of as individual tasks or programs) and some, but not 
all, of the PASS processes were out of phase with other PASS 
processes that were responsible for the 1tpollingt8 of data from 
sensors. Thus the BFS regarded all the information from the 
sensors as garbage. This out-of-phase condition occured 
because the BFS processes and some, but not all, of the PASS 
processes were scheduled based on a cycle counter, while the 
remaining PASS processes were scheduled based on a separate 

The problem was that this calculated startup time. 
calculated startup time appeared, to the computer, to be in 
the past because it was compared to a value in a supposedly 
empty timer queue that unfortunately was not enpty. The 
computer let the Igpast" start time ~~sliptt into the future (as 
would an alarm clock set to go off an hour ago) and hence the 
out-of-phase condition. The queue was not really empty 

2 

If you find t h i s  inc red ib ly  complex and confusing, don't uorry  - i t  is .  The po in t  here i s  not 
t o  t r y  t o  understand a l l  the d e t a i l ,  but rather t o  appreciate the subt le ty  and canplex i ty  o f  problems 
that  can and do occur in  rea l - t ime contro l  system software. To me, the PASS/BFS design sounds l i k e  
an SRMMA nightmare. 

L 
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because an isolated data initialization process put a 'vdelayll 
value in the timer queue that specified when to start the 
initialization routine. This delay was initially small and 
did not produce any unwanted side effects. But late in the 
system development, about one Year prior to launch, this 
isolated value, a single 'Iconstant in the code," was increased 
to a value large enough so that the out-of-phase condition was 
possible (the value was increased because of a totally 
unrelated problem, and by this time much of the system testing 
and integration had been completed). It is significant that 
much of the problem stemed from a basic incompatibility 
between the BFS and the PASS; the PASS is an asynchronous 
system (i.e. a priority interrupt system) while the BFS is a 
synchronous system. The PASS system had to be made to '#look 
synchronous" to the BFS, but the emulated synchronism was 
implemented unevenly (only in llcriticalvt processes) , and so 
the possibility arose for processes to become out-of-phase. 

The bug that delayed the initial orbital launch of the 
Space Shuttle is one particularly well documented example of 

3 the types of problems that can occur in real-time software. 
As shown, problems can be caused by seemingly inconsequential 
changes to seemingly unrelated code segments. Note also that 
the timing of events is important, yet the timing constraints 
that must be satisfied for safe operation may be unknown or 
unclear. The following statement by Garman is appropriate: 

"It is complexity of design and process that got us 
(and Murphy's Law!). Complexity in the sense that 
we, the 'software industry' are still naive and 
forge into large systems such as this (the Shuttle) 
with too little computer, budget, schedule, and 
definition of the software role. We do it because 
these systems won't work, can't work, without 
computers and software.I' 

Garman also notes that the ability to quickly and easily 
modify software (unlike hardware) is a two-edged sword; this 
flexibility can reduce costs and lead to better designs, but 
uncontrolled flexibility can create disasters. Recently, a 
Shuttle engine test was scrubbed by a computer software check 
because of an apparently sluggish valve. The valve controls 
the flow of liquid hydrogen and must be no more than 20% open 
to prevent a fuel system rupture. According to an Associated 
Press report in The Huntsville Times (August 5, 1988), NASA 
had the options of replacing the valve or chansina software 

3Hany other i l l u s t r a t i v e  examples have been recorded over the past decade in  the issues of 
Software Engineerins Notes [Neunann, 19851. 
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commands to accomodate the way the valve worked (? )  during the 
test. NASA officials decided to change the valve. 

3.2. Future TrenUs 

Software controls have many advantages over hardware 
controls, including greater precision, flexibility, and 
(perhaps) reliability, as well as allowing a high degree of 
automation. So software will continue to be an important part 
of future aerospace systems, and more of the same types of 
problems can be expected. The Space Station, for example, 
will depend on the Space Station Information System (SSIS), 
Data Management System (DMS), Technical and Management 
Information System (TMIS), and other communications, tracking, 
and ground support software to perform its important 
information gathering functions. Further, these software 
elements will need to interface successfully with each other 
and with crew members, laboratory experiments, and (life 
critical) software controlled subsystems such as the 
Environmental Control and Life Support System (ECLSS). 

Perhaps more significant for the future are the new set 
of software safety problems posed by the incorporation of 
"advanced software technologyt1 into the Space Station 
operations software. The use of artificial intelligence and 
expert system technology is mandated by the Space Station 
Program office. Consider the following Space Station 
requirements [NASA, 1988al: 

It(capability for) Growth of artificial intelligence 
and robotic technologyll 

IIIncorporation of machine intelligence in the form 
of expert systems, initially for well-defined and 
structured applications and later for more advanced 
appl icat ionsgt 

llComplex information interfaces of telerobots and 
autonomous robots. The following are example types 
of potential information required by the 
intelligence of robotic devices: 

--The location at all times 
--The location of obstacles and how to avoid 
them at all times 
--The proper interaction sequence with objects 
to be manipulated 
--Status of itself and its task object 
--Its own limitations with respect to its 
current environment.II 
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These advanced technology requirements either require 
new software concepts (e.g. artificial intelligence and 
expert systems) or require new software applications (e.g. 
control of telerobots and autonomous robots in hazardous 
space environments). These requirements add significant 
complexity to the envisioned Space Station software system 
and add new types of safety and reliability problems that are 
not found in other real-time control and monitoring systems. 
Unfortunately, common software engineering management and 
development practices may be ineffective against these new 
problems, as they have been against the more traditional 
problems of the past. 

3.3. Failure Costs 

Some would argue that serious measures to improve 
software safety in the manned space program are unjustified 
because of added costs and limited funds. The space program 
is, after all, a large-scale research program, so why doesn't 
NASA just Itget on with it,r1 and put the hardware into space 
without worrying so much about the safety of this or the 
reliability of that. This seems to be the view of Senator 
Jake Garn, R-Utah, who flew on Discovery in April 1985. In 
an August 5, 1988 Associated Press article in The Huntsville 
Times, Garn was quoted as saying IlI think that at this point 
we probably are being a little bit too cautious because of 
all the attention (from the news media).I1 Garn may be right. 
After all, the potential catastrophic impact from a manned 
space disaster surely cannot compare with, for example, the 
accidental firing of a nuclear missle or the core meltdown of 
a nuclear reactor. This simplistic analysis is flawed, 
however, because it does not adequately take into account the 
costs of failure due to lack of appropriate safety measures. 

Any rational decision on how much to spend on software 
safety, and systems safety in general, must consider not only 
the costs of implementing the safety measures but also the 
benefits of implementing the safety measures, i.e. the costs 
of disasters avoided. For the manned space program these 
benefits can be very great. The public no longer views NASA 
as simply a large-scale research and development agency. 
According to John E. Pike, a space program analyst at the 
American Federation of Scientists, "A lot of the public 
support and interest (in NASA programs) grows out of the 
perception that this represents the best of America and our 
highest aspirationsll (The Huntsville Times, August 7, 1988). 
As a consequence, NASA's public image can suffer greatly 
because of failures. In a recent survey of 1,223 adults, 
nearly half lost confidence in NASA after the Challenger 
disaster, and 60 percent of those still lacked confidence 
(The Huntsville Times, July 25, 1988). The effect of future 
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failures on agency funding should be obvious. According to 
Pike, "If they (NASA) don't get another dozen flights under 
their belt before another accident, I'd be real surprised if 
the shuttle ever flew again. If (an accident strikes) this 
one (the next Shuttle launch), it would pretty well stop the 
space program.1t Such high costs of failure suggest that 
safety measures, including software safety measures, are 
probably a bargain if they can measureably reduce the chances 
of failure. 

. .  
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4.  SOFTWARE ENGINEERING 

4 .1 .  Current State 

Software engineering is the art or science or whatever 
of designing, constructing, and testing computer programs. 
David Parnas, a noted computer scientist and consultant, 
wrote a series of eight essays on why the Strategic Defense 
Initiative would not be trustworthy because of software 
development difficulties [Parnas, 19851. These essays were 
submitted in 1985 along with Parnas' resignation from the 
Panel on Computing in Support of Battle Management, convened 
by the Strategic Defense Initiative Organization. In one of 
these essays Parnas suggests that the state-of-the-art in 
software engineering is significantly behind that of other 
more mature engineering disciplines. His claim is supported 
by three interesting contrasts between software and other 
engineered products: 

1) When most engineered products are designed, tested, 
and sold, it is assumed that the product is **correct** as 
per functional requirements) and reliable. Finished 
software, on the other hand often has significant 
'*bugs** and may be unreliable." It is usually expected 
that the software will improve with subsequent versions, 
but this is not always the case. 

2) Most engineered products come with an express or 
implied warranty, but finished software products often 
come with a specific disclaimer of warranty. 

3 )  Designers in more traditional engineering disciplines 
have been educated to understand and use a variety of 
mathematical tools, while designers of software are 
generally uneducated in even the modest tools that are 
available to software engineers. 

Some reasons for the current state of software 
engineering are given below. The first reason is suggested 
by Parnas, the others are my personal observations. 

'Respected computer scient ist  Edsger U. Di jks t ra  [Neunann, 19851, claims rhat West of NASA's 
software i s  fu l l  of bugs." After  the successful moon landing in  1969, D i jks t ra  asked Joel Aron of IBM, 
who had been responsible for  much of the f l i g h t  software d e v e l o p n t ,  how he "got that  software t o  work 
okay.81 I n  one of the trajectory computations, we had the 
moon's gravity repulsive rather than attract ive,  and th is  was discovered by accident f i v e  days before 
count zero.Il 

llOkay?ll Arm replied, "It was f u l l  of tugs. 
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Software is complex. 

One reason for the current state of software engineering 
is the inherent complexity of large-scale software projects. 
Large software systems are discrete systems with an enormous 
number of possible states. Further, software systems usually 
have few repeatable structures, so that it is not possible to 
construct a large software system by assembling a large 
number of small, identical, software  module^.^ In contrast 
the design of large-scale integrated circuits, while discrete 
and having many possible states, is made simpler because many 
of the structures are repeatable (note that modern computer 
hardware is vastly more reliable than computer software). 

Success in software development may, in fact, be limited 
by the complexity of the underlying system. In the 
conclusion to one of his essays, titled The limits of 
software enuineerinq methods, Parnas discusses the difficulty 
of developing a trustworthy software system for S D I  battle 
management: 

I I I  am not a modest man. I believe that I have as 
sound and broad an understanding of the problems of 
software engineering as anyone that I know. If you 
gave me the job of building the system (SDI battle 
management software;, and all the resources that I 
wanted, I could not do it. I don't expect the next 
20 years of research to change that fact." 

Software is abstract. 

Software only exists in the computer, which is very 
different from the world that people live in. Software can 
not be seen, touched, or heard, it does not have material 
strength, and it does not bend, twist, chip, split, or 
otherwise wear out. This abstract property makes software 
desisn appear inefficient to the near-sighted, because design 
and coding (i.e. llconstructionll) cost about the same but 
coding produces something tangible (the code can be run on a 
computer and large piles of results can be printed). Thus 
there is a strong tendency in software engineering to skip 
over the design phase to the coding phase. In many other 
engineering disciplines, however, there is a clear cost 
advantage to establishing rational and efficient design 

'Neunann 119841 quotes from a book cal led Software and I t s  Development by Joseph Fox, where Fox 
discusses the problems o f  test ing Air T r a f f i c  Control software systems: "The mmber of possible paths 
through these large programs, and the rwnber of possible combinations of states of inputs, data, 
calculations, and interactions i s  so large that even in  100 years of use, we w i l l  only be beginning 
t o  execute the f i r s t  few percent o f  the possible paths (through the code). Even a f t e r  years of real  
use, there w i l l  s t i l l  be bugs i n  the program.I4 
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methods because an iterative "construct and test" approach is 
too expensive. 

Software desisn reauirements may be ambisuous or 
incorrect. 

This may be just a result of the complexity of software 
as discussed by Parnas, but it is important enough to deserve 
separate mention. Software requirements are often written 
without specific knowledge of the hardware and without 
complete knowledge of the functional requirements. In 
contrast a civil engineer, for example, can make logical 
assumptions about the loads a structure must withstand and the 
Itworst case" combination of loads. 

Software ensineerins is multidisciplinary. 

It seems intuitive that a software designer should 
understand the application area as well as the software 
engineering discipline (remember that computer science is 
fundamentally an applied discipline). Unfortunately, these 
larger-than-life persons are difficult to locate, and in any 
case would probably demand far too much money. As a result, 
software is usually written by persons who only know software 
or who only know the application. 6 

4.2. Modern Approaches 

The current state of softwear engineering should concern 
those responsible for the safety, reliability, and quality of 
softwear. In recent years several softwear engineering design 
approaches and tools have been developed to aid the softwear 
engineering manager and the softwear designer. These 
approaches and tools include: the concept of the softwear 
acquisition life cycle; independent verification and 
validation of softwear projects; and computer-aided softwear 
engineering tools. Although these concepts and methods are 
not a panacea-they do not guarantee high quality softwear-they 
can, if implimented uniformly, be the foundation for other 
design approaches and techniques aimed at, for example, 
improving softwear safety. Uniform implimentation of these 
ideas also allows accurate measurement of the effects of 
future changes in softwear design approaches. Each of these 
design approaches and tools is discussed in the following 
paragraphs. 

61 read a recent l e t t e r  t o  the editor that argued for  a return t o  the Ilgood o ld  days" when 
computer scient ists were fundamentally rooted in  an area of application (e.g. some type o f  engineering) 
and applied computer science principles t o  the i r  f i e l d  of interest .  This person suggested that the 
four year undergraduate degree i n  computer science be eliminated i n  favor of a two year graduate 
degree. 
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The software acauisition life cycle (SALC). 

The SALC comprises a heirarchical set of software design, 
coding, and maintenance tasks, and associated documentation, 
that define the software acquisition process from initial 
concept phases through final delivery and maintenance phases. 
The SALC is a highly structured approach to softwear 
engineering. Specific requirements associated with each phase 
are satisfied and baselined before the next phase is begun. 
Control is exercised at the transitions between phases to 
assure consistency of requirements and specifications. 

The NASA SALC is shown in Figure 1, which is taken from 
the NASA guidebook titled: Software Verification and 
Validation for Project Manasers [NASA, 1987aI.' Loesh [1988] 
gives a general description of the objectives of the various 
life cycle phases, which for convenience is repeated below. 

1) Concept and Project Definition Phase. Ensure software 
plans, policies and management are appropriately part of 
early plans and design, i.e. feasible/scoped/costed. 

2) Software Initiation Phase. Specify a formal 
system/software definition and consununate the 
acquisition/development plans (lowest risk delivery 
agreements) . 
3 )  Software Requirements Definition Phase. Scope each 
program, establish engineering procedures and confirm 
computer/software compatibility (last chance to say what 
you want). 

4 )  Software Preliminary Design Phase. Evaluate the 
following: 1) are there any major design flaws, and 2 )  
is it consistent with the hardware it is planned to 
execute to? 

5) Software Detailed Design Phase. Determine that the 
module does the right things and will be coded following 
good engineering principles. 

6) Software Implementation Phase. Build and show as 
agreed that the program works correctly. 

7) Software and System Integration and Testing Phase. 
Does the system do what was requested? 

'This guidebook has been updated recently, and the SALC in the new version may be somewhat 
different. 
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Figure 1 - Software Acquisition Life Cycle 
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'0 8 )  Software Acceptance Testing Phase. Get the software 
and pay the bill. 

9) Sustaining EngineeringPPhase. Fix latent softwear 
bugs and produce product upgrades, while ensuring that 
the software still works correctly. Manage software 
distribution and amhival (including documentation). 

It should be obvious that successful implementation of 
the SALC concept does not come easily and without costs. It 
has been demonstrated in practice, however, that the life 
cycle concept is cost efficient when considering costs over 
the entire useful life of the software (recall the statistics 
on military software spending). The life cycle model is also 
thought to improve the general quality of the finished 
software product (which of course can be linked to cost in 
terms of sales revenues, disasters avoided, and reduced 
maintenance). Perhaps the real reason why the SALC works is 
that actual software coding (implementation phase) is 
postponed till late in the project. The software managers and 
designers must think hard in the beginning about requirements, 
specifications, and associated design issues. This process 
(and the sheer volume of associated paperwork) allows the 
designers and implementers enough time to mull over the 
various design possibilities and choose a good one before 
committing to code, all the while ttappearingtt to be 
productive. Some successful software engineering firms have 0 
implemented rigid policies so that on a one-year project, for 
instance, coding cannot commence until the ninth month! 
Another important function of the SALC is that it provides 
the development framework necessary for implementing design 
tools and procedures aimed at accomplishing more specific 
software design objectives, e.g. increasing software safety. 

Independent verification and validation (IV&V). 

Software independent verification and validation is a 
technical discipline that is in effect during all phases of 
the software acquisition life cycle. The various IV&V 
activities and their relations to the SALC phases are shown 
in Figure 2, taken from the previously cited NASA guidebook. 
As shown, IV&V activities include designing and executing 
tests based on information from requirements and specification 
documents, design documents, and code audits. These tests are 
meant to ensure that the final delivered product meets the 
stated requirements and is of high quality. In addition to 
formal testing, IVLV activities also assure that each software 
end item, whether a individual module, a partially integrated 
subsystem, or a fully integrated system, satisfies its 
corresponding requirements and specifications as prescribed 
during the heirarchical design process (a definition of 
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Figure 2 - Software IV&V 
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ttvalidationtl), and that the products of each phase of the SALC 
satisfy the requirements and specifications of the preceeding 
phase (a definition of ttverificationlt). It seems logical that 
IV&V staff should be mostly seasoned, experienced personnel 
(who knows all the Ittricks of the trade"): this is no place 
for the green programmer with little practical experience. 

The I1independentl1 in IV&V refers to the relationship 
between the project management (NASA), the development 
contractor, and the IV&V contractor. The quality of the IV&V 
effort and hence the quality of the delivered scftwear is 
thought to increase with the degree of independence between 
these players. Minimal independence is achieved by a 
development contractor who uses the development staff for IV&V 
(really just V&V), while maximal independence is achieved by 
a wholly separate IV&V contractor that communicates with the 
developer and with NASA by separate channels. A truly 
independent verification and validation contractor provides 
an unbiased critical review and tlsecond opinion" of the 
softwear. Independence assures that the testing and design 
reviews will not be polluted by the day-to-day design 
activities, and that IV&V personnel will not be competing for 
resources with development personnel. A higher degree of 
independence does, of course, add significantly to the up- 
front project cost. These costs should properly be weighed 
against the criticality Jf the software when deciding on the 
degree of independence. This trade-off analysis should also 
consider the non-trivial costs of the sustaining engineering 
phase (maintenance), which are presumed to decrease with an 
increase in independence. 

0 

Computer aided software ensineerina (CASE). 

CASE tools are programs to help write programs. CASE 
tools emphasize a systems approach to software engineering, 
as opposed to a ad hoc Itsoftware craftingv1 approach. Thus 
CASE supports the life cycle model of software development, 
and can make the transition to SALC easier by assisting the 
programmer in various tasks associated with the life cycle 
phases. The following are examples of CASE tools that either 
exist or are under development: program design languages and 
specification languages: test design aids; symbolic debuggers; 
automatic code generators; and configuration management aids. 
These tools are usually graphical and highly interactive. 
Other CASE tools implement the structured approach to 
requirements specification that is growing in popularity 
[DeMarco, 19791. 

The future Space Station Software Support Environment 
(SSE) is an ambitious effort by NASA to supply Space Station 
software developers with a consistent and comprehensive set 
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of CASE tools. Consider just a few of the stated requirements 
for the SSE, taken from the SSE system functional requirements 
specification [NASA, 1988bl: 

"The SSE system shall support project initiation and 
control, project management, metrics collection and 
analysis, project planning, budgeting, resource 
allocation and accounting, scheduling, lessons 
learned gathering and analysis, and performance 
management. 

"The SSE system shall provide the capability to 
determine the complexity and criticality of a 
proposed change and to prioritize proposed changes 
based upon those metrics.Il 

"The SSE system shall support computer-aided 
preliminary design for SSP operational software and 
SSP prototypes, models and simulations.Il 

"The SSE system shall support software checkout and 
verification from the unit level, to the sibsystem 
level, to the complete software system, and finally 
to integrated software and hardware systems.Il 

And the list of requirements goes on and on. Once complete, 
the SSE will be a state-of-the-art programming environment for 
the development of all Space Station software. Further, the 
SSE will support the development of new software engineering 
tools and methods as well as their rapid integration into the 
development life cycle. Some of these new tools and methods 
could address timely issues in software safety. 
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5 .  SOFTWARE SAFETY 

Software by itself is harmless. When software is 
embedded in a hardware system, however, say for a real-time 
control application, inappropriate software actions or 
inactions can lead to hazardous system states with 
catastrophic potential. Nevertheless, moderr, software 
development efforts do not normally consider these software 
safety concerns. Safety is not usually included in the 
software requirements specification, and IV&V activities 
address software vtqualityll issues but not necessarily software 
safety . 

Comprehensive and generally applicable software safety 
methods, tools, and techniques do not currently exist. 
Software safety can be achieved only through software design 
(as opposed to redundancy as in hardware). Unfortunately, 
there are few adequate mathematical tools for analyzing 
software designs, and few adequate metrics for measuring 
software safety. It is unlikely that a "safety factor" 
concept can be applied to software, and at the present there 
is no comprehensive "building codett that will assure software 
safety. 

Although technology lags behind, there is a strong 
institutional motivation for developing and implementing 
software safety methods. Applicable government standards and 
new project requirements are now addressing software safety 
issues. This new focus is especially noticeable in the 
Military safety program requirements and the program 
requirements for the Space Station. 

The Military standard on system safety program 
requirements [DoD, 19871 includes a new task section (as of 
July 1987) on software hazard analysis requirements. This 
set of requirements emphasizes a systems approach (which is 
necessary, of course) that includes analyses of the safety 
critical hardware/software interfaces. Thus information from 
hardware safety analyses (hazard analyses, FMEA's) are used 
as input to the software safety analysis, and leads to the 
concept of a Safety Critical Computer Software Component 
(SCCSC). These SCCSC's or sets of interfacing SCCSC's can be 
targeted for detailed investigations to determine, for 
example, whether certain hazardous events can occur as a 
result of software actions or inactions, or if adequate 
software safety controls are present. This standard 
appropriately supports the life cycle software development 
model, and includes software hazard analysis requirments for 
each of the major SALC phases. 
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A variety of Space Station Program (SSP) documents 
specify software safety requirements. The software product 
assurance requirements [NASA, 1988al state that the provider 
"shall plan, document, and implement a software safety 
process.11 The MSFC level C Space Station software management 
plan [HASA, 1987bl requires a software product assurance plan 
that emphasizes "software fault tolerance and software failure 
mode and effects analysis for all critical software packages." 
The instructions for SSP hazard analysis preparation [NASA, 
1987~1 includes software hazard analyses in the scope of work, 
and describes a software hazard analysis approach that 
includes the use of software fault tree analysis. 

The cited Military standards and NASA documents say what 
to do but not how to do it (which is appropriate for documents 
of this type). As indicated above, the current technology for 
the Irhowl1 part is probably inadequate for implementing the 
vlwhatll part. Recent concern about software safety has, 
however, spurred the investigation of new software safety 
tools, techniques, and methods [Leveson, 19861; these 
approaches are summarized below. Most investigations have 
borrowed existing hardware safety analysis techniques and 
applied them to software, and most have applied the techniques 
to relatively simple test systems. Although in an early stage 
of development, some of the techniques show promise, and the 
continued development of these and other software safety 
approaches should be supported in order to meet the software 
safety needs of the future. 

Software fault tree analysis (SFTA). 

The application of fault tree analysis to software was 
investigated by Leveson and Harvey [1983], Leveson and Stolzy 
[1983], Leveson [1984], and Cha, Leveson, and Shimeall [1987]. 
SFTA uses a knowledge of the programming language to build a 
fault tree that describes all possible software paths leading 
to a particular hazardous event. Successful paths (those 
which produce the hazardous event) must be eliminated or 
controlled or justified as very unlikely to OCCUI' in practice. 
In Leveson and Harvey [1983], SFTA was applied successfully 
to a flight and telemetry control program for a University of 
California, Berkely, spacecraft (approximately 1250 lines of 
assembly language code). The SFTA identified a logic error 
whereby two sun-pulse interrupts within 64 ms of each other 
could crash the microprocessor and render the spacecraft 
useless (such a condition is highly unlikely, but one of the 
"sun-pulsestl could be artificially produced by gamma 
radiation). A simple software check could eliminate this 
hazardous condition. 

XXVI I I- 19 



SFTA is practical when there exists only a limited number 
of safety critical failures, a condition that is apparently 
often satisfied. SFTA is thought to be helpful because it 
provides a structured approach to thinking about software 
problems from a safety perspective. It also may be possible 
to automate the generation of the software fault trees by 
examination of the code. A disadvantage of SFTA is the 
difficulty of including timing related failures in the 
analysis. 

Petri nets. 

The application of Petri nets to software safety analysis 
was investigated by Leveson and Stolzy [1987]. A Petri net 
is a dynamic system modeling approach consisting of places, 
transitions between places, and a set of tokens marking the 
places and defining the current system state. Software 
systems can be modeled by Petri nets and the Petri nets can 
be executed, which consists of ttfiringtt the tokens along the 
enabled transitions toward a new set of places. Repeated 
firing of the Petri net models the dynamic system behavior. 
The advantage over static analysis approaches (e.g. SFTA) is 
that important timing properties of programs can be 
investigated. Run-time faults and failures can also be 
incorporated into the analysis, and there is significant 
opportunity for computer-aided analysis. In the paper by 
Leveson and Stolzy a Petri net model was applied to a simple 
railroad crossing controller. 

Sneak software analysis. 

In sneak software analysis the program is converted into 
flow diagrams using electrical symbols, and is then analyzed 
to detect certain logic errors such as undefined variables. 
Leveson [1986] points out that much of this information is 
provided by good compilers, and that furthermore sneak 
software analysis is more a reliability than a safety 
technique since it attempts to identify all faults. She 
further notes that it is unlikely that many significant faults 
will be found this way (of the type that were discussed 
previously), and draws a parallel between trying to find 
significant errors using sneak software analysis and tltrying 
to find the errors in a book by checking the grammar.Il 

N-version Drosrammins. 

N-version programming was investigated by Avizienis 
[1985] as an approach to fault-tolerant computing. In this 
approach N different programs are developed from the same 
functional specifications. The developers should be as 
independent as possible, and should use different tools and m 
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compilers. These N program versions are executed 
simultaneously and the results are polled and compared by a 
voting program, with the correct answer taken as the majority 
answer. Sophisticated methods have been devised to provide 
for communications between the various versions and the voting 
program, and hence to ease development efforts. The approach 
depends, however, on the assumption that software design and 
implementation errors associated with the different versions 
are independent (a high degree of dependence of errors could 
create situations in which the majority of program answers 
agree but are all wrong). Unfortunately the approach may be 
limited by this assumption, as a recent study suggests that 
the assumption of independence may not be justified [Knight 
and Leveson, 19861 (consider the special problem of dependence 
because of common specification errors). Further study is 
needed to evaluate thoroughly the assumption of independence 
before N-version programming can be used widely with 
confidence. 
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6. CONCLUSIONS AND RECOMMENDATIONS 

Large-scale software systems are often used to control 
real-time flight and ground operations on manned space 
missions. This trend is expected to increase because of the 
emphasis on automation and advanced software technology. 
There is ample evidence that suggests these large software 
programs will contain logic errors that may under certain 
situations lead to hazardous conditions. Thus it is important 
to emphasize safety-related approaches to software development 
throughout the useful life of the software, beginning at 
requirements development. Software safety engineering is a 
young discipline, however, and the necessary analysis and 
development tools are only beginning to be developed. It is 
a tough problem, since software is highly complex, abstract, 
and does not lend itself easily to mathematical analysis. 

SRM&QA should take a leadership role in the development 
and refinement of software engineering methods, techniques, 
and tools that can help to improve software safety, 
reliability, and quality. This is especially important for 
software safety, because while software reliability and 
quality have many proponents, software safety is largely 
neglected because it is separated from functional requirements 
and traditional performance measures. SRMCQA should strive 
to build and maintain a knowledge base of sound software 
engineering practices that it can distribute to contractors 
for use in project development. 

Several specific recommendations follow, not necessarily 
in any order. 

assurance function and to promote S P A  methods. 
SRM&OA should continue to develop its software product 

The SPA activities (including IV&V) are the backbone of 
any effort to improve software safety, reliability, or 
quality. SRM&QA should logically be responsible for the bulk 
of NASA S P A  activities and in fact for the bulk of NASA IV&V 
contracting and monitoring. NASA should consider a software 
project management structure that provides €or internal 
independence of development and IV&V engineers and managers. 
SRM&QA should develop a consistent and rational method for 
determining the necessary degree of independence of the IV&V 
contractor based on software criticality, total life cycle 
cost, and other factors. 
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SRM&QA should develoD a software hazard analysis 
methodolosv. 

This development effort may include an evaluation of 
applicable Military standards and other guidebooks and 
instruction manuals with regard to NASA's  needs; an evaluation 
of personnel requirements including skill and education 
levels: identification and evaluation of existing techniques 
and computer-based tools for software hazard analysis; 
development and evaluation of new techniques and computer- 
based tools for software hazard analysis; and investigation 
and development of recommended software design methodologies 
that enccurage the production of safe software (i.e. safety 
metrics and analysis techniques, and "building codes" for safe 
software development). 

SRM&OA should explore the possibility of developins an 
inteqrated commter-based environment to support all SRM&OA 
manaqement and ensheerins activities. 

This computer-based environment would be graphics-based, 
would include a variety of tools specific to SRMtQA 
activities, and would interface directly or indirectly with 
the Technical and Management Information System (TMIS), the 
Software Support Environment (SSE) , the Space Station 
Information System ( S S I S ) ,  and the Data Management System 
(DMS). The potential benefits of this development effort 
include improved efficiency and quality of work, and expedited 
flow of information between SRM&QA, other NASA organizations, 
and contractors. 

SRM&QA should develop and investisate methods, 
techniaues, and tools for evaluatina the safety, reliability, 
and aualitv of software systems that use advanced software 
ensheerins technoloqv. 

Specifically, SRM&QA should investigate special safety, 
reliability, and quality problems (and their possible 
solutions) created by the use of artificial intelligence and 
knowledge based expert system technology in critical software 
systems. Use of this technology (or provision for its use) 
is a requirement of the Space Station Program, and it is not 
clear, for example, whether current software engineering 
practices apply or whether anyone even knows how to debug an 
expert system or artificial intelligence program. 
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